13 research outputs found

    An extensive photometric study of the Blazhko RR Lyrae star RZ Lyr

    Full text link
    The analysis of recent, extended multicolour CCD and archive photoelectric, photographic and visual observations has revealed several important properties of RZ Lyr, an RRab-type variable exhibiting large-amplitude Blazhko modulation. On the time-base of \sim110 yr, a strict anticorrelation between the pulsation and modulation period changes is established. The light curve of RZ Lyr shows a remarkable bump on the descending branch in the small-amplitude phase of the modulation, similarly to the light curves of bump Cepheids. We speculate that the stellar structure temporally suits a 4:1 resonance between the periods of the fundamental and one of the higher-order radial modes in this modulation phase. The light-curve variation of RZ Lyr can be correctly fitted with a two-modulation-component solution; the 121 d period of the main modulation is nearly but not exactly four times longer than the period of the secondary modulation component. Using the inverse photometric method, the variations in the pulsation-averaged values of the physical parameters in different phases of both modulation components are determined.Comment: 15 pages, 14 figures, 8 tables. Published in MNRAS, 2012. [v3]: Only change: title correcte

    Fitting Blazhko light curves

    Full text link
    The correct amplitude and phase modulation formalism of the Blazhko modulation is given. The harmonic order dependent amplitude and phase modulation form is equivalent with the Fourier decomposition of multiplets. The amplitude and phase modulation formalism used in electronic transmission technique as introduced by Benk\H{o}, Szab\'o and Papar\'o (2011, MNRAS 417, 974) for Blazhko stars oversimplifies the amplitude and phase modulation functions thus it does not describe the light variation in full detail. The results of the different formalisms are compared and documented by fitting the light curve of a real Blazhko star, CM UMa.Comment: 8 pages, 5 figures. Accepted for publication in MNRA

    Overtone and multi-mode RR Lyrae stars in the globular cluster M3

    Get PDF
    The overtone and multi-mode RR Lyrae stars in the globular cluster M3 are studied using a 200-d long, B,VB,V and ICI_{\mathrm C} time-series photometry obtained in 2012. 70\% of the 52 overtone variables observed show some kind of multi-periodicity (additional frequency at f0.61=f1O/0.61{f_{0.61}}={f_{\mathrm {1O}}}/0.61 frequency ratio, Blazhko effect, double/multi-mode pulsation, period doubling). A signal at 0.587 frequency ratio to the fundamental-mode frequency is detected in the double-mode star, V13, which may be identified as the second radial overtone mode. If this mode-identification is correct, than V13 is the first RR Lyrae star showing triple-mode pulsation of the first three radial modes. Either the Blazhko effect or the f0.61{f_{0.61}} frequency (or both of these phenomena) appear in 7 double-mode stars. The P1O/PFP_{\mathrm{1O}}/P_{\mathrm{F}} period ratio of RRd stars showing the Blazhko effect are anomalous. A displacement of the main frequency component at the fundamental-mode with the value of modulation frequency (or its half) is detected in three Blazhko RRd stars parallel with the appearance of the overtone-mode pulsation. The f0.61{f_{0.61}} frequency appears in RRc stars that lie at the blue side of the double-mode region and in RRd stars, raising the suspicion that its occurrence may be connected to double-mode pulsation. The changes of the Blazhko and double-mode properties of the stars are also reviewed using the recent and archive photometric data.Comment: accepted for publication in ApJ Suppl. 26 pages, 25 figure

    WHAT IS THE DIFFERENCE? BLAZHKO AND NON-BLAZHKO RRab STARS AND THE SPECIAL CASE OF V123 IN M3

    Get PDF
    In an extended photometric campaign of RR Lyrae variables of the globular cluster M3, an aberrant-light-curve, non-Blazhko RRab star, V123, was detected. Based on its brightness, colors and radial-velocity curve, V123 is a bona fide member of M3. The light curve of V123 exhibits neither a bump preceding the light minimum, nor a hump on the rising branch, and has a longer than normal rise time, with a convex shape. A similar shape characterizes the mean light curves of some large-modulation-amplitude Blazhko stars, but none of the regular RRab variables with similar pulsation periods. This peculiar object thus mimics Blazhko variables without showing any evidence of periodic amplitude and/or phase modulation. We cannot find any fully convincing answer to the peculiar behavior of V123, however, the phenomenon raises again the possibility that rotation and aspect angle might play a role in the explanation of the Blazhko phenomenon, and that some source of inhomogeneity (magnetic field, chemical inhomogeneity) deforms the radial pulsation of Blazhko stars during the modulation.5 pages, 5 figures; accepted for publication in ApJ Lettersstatus: publishe

    Overtone and multi-mode RR Lyrae stars in the globular cluster M3

    No full text
    The overtone and multi-mode RR Lyrae stars in the globular cluster M3 are studied using a 200-d long, B,V and IC time-series photometry obtained in 2012. 70% of the 52 overtone variables observed show some kind of multi-periodicity (additional frequency at f0.61=f1O/0.61 frequency ratio, Blazhko effect, double/multi-mode pulsation, period doubling). A signal at 0.587 frequency ratio to the fundamental-mode frequency is detected in the double-mode star, V13, which may be identified as the second radial overtone mode. If this mode-identification is correct, than V13 is the first RR Lyrae star showing triple-mode pulsation of the first three radial modes. Either the Blazhko effect or the f0.61 frequency (or both of these phenomena) appear in 7 double-mode stars. The P1O/PF period ratio of RRd stars showing the Blazhko effect are anomalous. A displacement of the main frequency component at the fundamental-mode with the value of modulation frequency (or its half) is detected in three Blazhko RRd stars parallel with the appearance of the overtone-mode pulsation. The f0.61 frequency appears in RRc stars that lie at the blue side of the double-mode region and in RRd stars, raising the suspicion that its occurrence may be connected to double-mode pulsation. The changes of the Blazhko and double-mode properties of the stars are also reviewed using the recent and archive photometric data.accepted for publication in ApJ Suppl. 26 pages, 25 figuresstatus: publishe
    corecore